
1

Midterm Review

CSE1030 – Introduction to 
Computer Science II

Goals for Today

• Theoretical
– Surviving the Midterm

• Practical:
– Surviving Lab Test #1

• Don’t forget – There are Two Tests!!
– Midterm: in Class Tuesday Oct 16
– Lab Tests: in Your Registered Lab Time

• Sect 01: Tues Oct 16
• Sect 02: Thurs Oct 18

Don’t forget to…

• Review your Assignments

• Review the Lecture notes

• Review the Readings
– Textbook

– Course Notes

• If you want more practice coding:
– Look in the Textbook!

– Every chapter contains “Programming Projects”

CSE1030 – Lecture #2

• Intro to Object Oriented Programming

• Elements of a Java Class

• Utility Classes

• JavaDoc

• We’re Done!



2

Idea Behind OOP

• Make it easier to 
develop and maintain 
large or complex 
software systems

• Originated in the 
original Graphical User 
Interface research 
projects (complex!)

• Fundamental Ideas:
– Organise Data and Code into Modules
– Formalise the way one module interacts with another

(We call this the Interface between the Modules)

Sketchpad (1963)

Why OOP?

• Encapsulation
– Data & Code* in single well-defined location
– Hide complexity away, only expose a simple API**

• Take Advantage of Inherent Relationships
– Polymorphism

• Objects that do similar things are often used similarly

– Inheritance
• Many things are “a kind of…” something else

*Code = Software
**API = Application Programming Interface

Java Classes
• Classes describe Objects       Important Idea!

(Every Object has a Class)

• Java Class Definition:      (we’ll come back to this)

1. Names the Class

2. Describes How to Construct an Object of the
Class

3. Stipulates Who can use our Objects, and How

4. Defines the Data in the Objects (and in the Class)

5. Contains all of the Code pertaining to the Objects

Elements of a Java Class
// any needed package statement
// any needed import statements

public class ClassName
{

// data declarations
private int i;

// constructor
ClassName(){ i = 0; };

// method definitions
int getI() { return i; }
void setI(int pi) {i = pi; }

}

1. Name the Class

2. How to Construct an Object

3. Who can use, and How

4. Defines the Data

5. Contains the Code



3

Definition of a Utility Class

• A Class that contains a common often re-used 
function (or family of functions)…

• No Objects – usually they are collections of 
functions

• Examples:
– java.lang.Math
– java.lang.System
– java.util.Collections

The main() Function
• The main function is where execution of all java 

programs begins

• All classes can have a main function
– Even if there are more than one class, each can 

have it’s own main function
– The only main function that matters is the one in the 

controlling class – that is the one that will be run

• The main function is labelled static, meaning that an 
object is not needed to run the main function
– That’s great if we don’t want the added complexity of 

having objects around

Preconditions

• Preconditions are instructions made to the 
users of your function

• You should always check the validity of
your function’s parameters

• But if you have limits in what you can 
handle, tell the user – use a precondition!

/**
* This class defines a function for
* adding two numbers
*/
public class AdditionUtility
{

private AdditionUtility() {};

/**
* This function adds two numbers.
*/
public static int add(int A, int B)
{

return A + B;
}

}

JavaDoc Comments



4

/**
* This function adds two numbers.
*
* @param A A number to add
* @param B Another Number to add
* @return The sum, A + B
*/
public static int add(int A, int B)
{

return A + B;
}

Adding Details to add() CSE1030 – Lecture #3

• Review

• The Person Class – Holding Data

• The Default Constructor

• Grouping Data and Code Together

• Copy Constructors
• Main() as a Testing Facility

• We’re Done!

Data / Attributes
• A lot of the OOP Philosophy has to do with 

Accessing and Changing the Data

• Advice:  Keep Data  private

• Allow Access via Accessor & Mutator Functions:
– Accessors getData()    /    Mutators setData()
– This gives the API creator Control

• You can Act when something has Changed
because you Made them Call a Function

– Isolation & Implementation Independence
• You can freely Change the Implementation

No one will Know, No one will have to Change their Code!

The Person Class
public class Person
{

// attributes
private String Name;
private int Age;

// no constructors

// methods
public String getName()         {return Name;}
public void   setName(String n) { Name = n; }

public int getAge()      {return Age;}
public void setAge(int a) { Age = a; }

}



5

Constructors
• Person Class uses the Default Constructor

– No Constructor Default Constructor
– Default Constructor Initialises:

• numerics = 0
• booleans = false
• objects = null

• Why would you use the Default Constructor?
– Because it’s Easy
– Less Coding

• For simple Classes, this is Fine
– But the Person Class is not Simple…

Grouping Data & Code 
Together (1)

• Good Organisation supports even Large or 
Complex Programs

• Groups / Modules / Classes should reflect
the Inherent Relationships

• Example:   Minimum Age to Drive

Overloaded Constructors
• More than 1 constructor!

– Basic Constructor:
Person(String name, int age)

– More Advanced Constructor:
Person(String name, int age, int weight)

– Copy Constructor:
Person(Person p)

• Overloading
– Two functions with the same name?

• They are different if their Parameters are Different Types

• Terminology: Method’s Signature must be Unique

main() for Testing – Summary

• main() is a part of the class, so
– It has Access to All Data and Code

– Even Private Data and Code

• Using main to do Unit Testing means
– Your tests are in one easy to find place

– And they are With the Code that they Test!



6

CSE1030 – Lecture #4

• Review

• Theory: Class Hierarchy

• Methods Inherited from Object
– toString() and hashCode()

– equals()

• Redundancy

• We’re Done!

The Object Class
(is the root of all classes)

• In Java All Classes (All Objects) are Derived 
from the Object Class

• The important implication is that we get some 
things for free:   (example coming…)
– toString()
– hashCode()   more on next slide
– getClass()
– equals()

• (We get more than this for free, but we won’t 
worry about the rest for now.)

toString and hashCode examples (1)
public class Person

{

// attributes

private String Name;

private int Age;

private int Weight;

// constructor

Person(String name, int age, int weight)

{ Name = name; Age = age; Weight = weight; }

// methods

public String getName()       { return Name; }

public void setName(String n) { Name = n;    }

public int getAge()       { return Age; }

public void setAge(int a) { Age = a;    }

toString and hashCode examples (2)

public void setWeight(int w) { Weight = w; }

// toString()

public String toString()

{

return "Person:" + Name + "," + Age;

}

// hashCode()

public int hashCode()

{

return Name.hashCode() + Age;

}

}



7

p2

Comparing with ==

• The == operator checks whether the names 
point to the same memory block (the arrows!)

Person p1 = new Person("William", 36, 120);

Person p2 = p1;

Person {“William”, 36, 120}p1

p1 == p2 is true

“==” checks the arrow

Comparing Objects
• Objects created separately are not == equal

– Even if they contain the same data!

– Because the arrow points somewhere else

Person p1 = new Person("William", 36, 120);

Person p2 = new Person("William", 36, 120);

Person {“William”, 36, 120}

Person {“William”, 36, 120}

p1

p2

p1 == p2 is false

equals()
• equals() compares data inside the object

– so it works as you’d expect

– not by default – only if you replace the default code

Person p1 = new Person("William", 36, 120);

Person p2 = new Person("William", 36, 120);

Person {“William”, 36, 120}p1

p2

p1.equals(p2) is true

Person {“William”, 36, 120}

Redundancy &
Private Member Functions

• The Idea:
– Code that gets used in more than one place in 

a Class, should be made into a private 
member function to reduce redundancy

• Why?  Reducing redundancy:
– Reduces the number of lines of code, which:
– Reduces the effort to maintain the code
– Reduces the likelihood of an error
– Makes the code more consistent

• Example…



8

CSE1030 – Lecture #5
• Review
• Variable Scope

– Parameters vs. Arguments
• Objects as Parameters / Arguments
• Privacy Leaks
• We’re Done!

Variable Scope

• What is “Scope”?
– Variable Scope refers to the areas within your 

program in which a variable is available

• Why do we care?
– So we don’t write confusing code

– So we control access to our data

Aside: Parameters versus 
Arguments

• A Parameter is the variable:  x

• An Argument is the value:  10

double calc(double x)
{

return x * Slope + Offset;
}

System.out.println("the answer is: " + calc(10));

Objects as Parameters, Arguments, 
and Return Values

• When an object is passed to a function’s 
Parameter as an Argument, the object is not 
copied!  Instead, the arrow (pointer) is passed, 
yielding access to the original object.

• The same thing happens when an object is 
returned from a function.



9

Object Parameter Passing
public class Int
{

// data
public int I;

// Constructors
public Int(int i) { I = i;   }  // regular
public Int(Int i) { I = i.I; }  // copy

// toString
public String toString() { return Integer.toString(I); }

// an example function
static Int FUNCTION(Int i2)
{

System.out.println("i2 (before) = " + i2 + "  == 100?");
i2.I = 200;
System.out.println("i2 (after)  = " + i2 + "  == 200?");
return i2;

}

public static void main(String[] args)
{

Int i1 = new Int(100);
System.out.println("i1 = " + i1 + "  == 100?");

System.out.println("Calling FUNCTION!");
Int i3 = FUNCTION(i1);

System.out.println("i1 = " + i1 + "  == 100?");
i1.I = 400;
System.out.println("i3 = " + i3 + "  == 200?");

}
}

Results

i1 = 100  == 100?
Calling FUNCTION!
i2 (before) = 100  == 100?
i2 (after)  = 200  == 200?
i1 = 200  == 100?
i3 = 400  == 200?

Objects as Parameters and 
Arguments

Object

main()

o1 = new Object

o3 = FUNCTION(o1)
FUNCTION(o2)

...

return o2;

The arrows (pointers) to the objects are what get copied 
on the way into (parameter/argument) and out of (return) a 
function.



10

Privacy Leaks
• Privacy Leaks are accidental access to private 

data members caused by incorrect treatment of 
parameters that are objects

• The following code looks like it’s doing 
everything correctly (private data and 
accessor / mutator methods)

• But something is wrong…

The Solution?  Pass Copies of Objects!

• This is why we have Copy Constructors 

• By passing a copy of an object, we retain our 
version of the object, and nobody else can 
modify it on us.

• We can still provide mutator functions to allow 
changes to objects, but so long as we copy our 
own versions of objects, nobody else can 
modify our objects behind the scenes!

CSE1030 – Lecture #6
• Review
• Static Data versus Instance Data
• Java Notation
• Static Utility Class Revisited
• Variable Hiding & Shadowing
• this
• We’re Done!

Important Concepts from Past 
Lectures

• In Java, Everything is a Class

• Classes Define Objects
–

• An Object Variable is
– A Name,
– An Arrow (pointer) to memory, and,
– A Block of Memory
–

• Static Utility Classes have no Objects

Person {“William”, 36, 120}p1

Person {…}

{Frank}{Anna} {Joe}



11

Review:  Regular Classes:

{Name: “Some Data”}p1

p2 {Name: “Some Data”}

{Static Data: “Some More Data”}

Instance

Instance

Static

• Regular Classes have:
– Instance Data (in the Objects)
– Instance Code (does things with Objects)
– Static Data (Shared by All Objects)
– Static Code (Only does things with static data)

Class

Inherent Relationships:
Static versus Non-Static Data

• Static Data is Best for
– Summary Statistics

• Counting, Serial Numbers, Profiling (Frequency, Time)

– Class-wide finals (Constants)

• Static Code is Best for
– Static Functions

(Little Utilities that don’t need an Object)
– main()

• Why?
– Pertain to a Class, Not Tied to an Object

Initialisation

• Initialise statics when they are defined 
(because the constructor is called once for each 
object created)

• Initialise instance variables when the object is 
constructed (i.e., in the Constructor)

private static int Number = 42;

class example {
private int Number;

example() { Number = 42; }
}

Initialising finals
• final denotes a constant

within a Class (i.e. static)
or within an Instance (Object)

• Why?
– Some constants pertain to the whole Class, whereas 

other only to an object

• Example…



12

How does Java know which Object?

CC{Balance:$25}visa

mc CC{Balance:$75}

// credit the credit card
public boolean credit(double amount)
{

if(amount < 0)
return false;

Balance -= amount;
TotalBalance -= amount;

return true;
}

• In credit(),
we just write 
“Balance”, java 
implicitly figures-
out which object 
(visa or mc) we 
are using

Implicit Parameter / Argument

• The idea is that the object by which an 
instance function is called is an Implicit 
Parameter, whereas our regular 
parameters are Explicit:

visa.credit(10)

Implicit 
Parameter

Explicit 
Parameter

Variable Hiding / Shadowing
• You can define a “Local Variable” or 

parameter to have the same name as a 
Class Data Member

• Why?
– It’s confusing, so it’s a bad programming 

practice

• Example…

this
• In instance code, the this variable is an 

alias for the name of our object

{Name: “William”, …}visa

this

visa.credit(10);



13

this
• this equals the implicit argument

visa.credit(10);

credit()
{

...
}

{Name: “William”, …}visa

this

this = visa
(Only inside the 

instance function)

Why do we need this?
• Since we can easily directly refer to:

– Instance Data (Data inside Objects)
– Static Data (Data in the Class)

why do we need this?

• this allows us to explicitly refer to 
Instance Data
– Sometimes good for clarity
– Solves Variable Hiding Problems
– Solves Inheritance Problems

Java Documentation Uses for this

1. To call from one constructor to another

2. Nested Classes (one class defined inside 
another one)

3. Passing References

4. Calling subclasses (Inheritance)

5. Fixing Variable Hiding Problems…

• this is frequently overused

• The Java documentation only lists 5 
situations where you need to use this:

this and Cool Variable Hiding?
public class Cool
{

String Name;
int Age;

public Cool(String Name, int Age)
{

this.Name = Name;
this.Age = Age;

}

public void setName(String Name)
{

this.Name = Name;
}

...  // rest of class
}



14

CSE1030 – Lecture #7
• Review
• Theory: “is-a” versus “has-a”
• Special Case 1:  Has 1
• Special Case 2:  Has a “Known” Number
• General Case:  Collections
• Retrieving Data from a Collection
• We’re Done!

Person {…}

Student {…}

Freshman {…}

GradStudent {}UnderGrad {…}

Sophomore {…}

public class Person

{

// attributes

private String Name;

private int Age;

private int Weight;

Person(String name, int age,

int weight)

{

Name = name;

Age = age;

Weight = weight;

}

...

We have seen both kinds of
relationship before…

• “is-a”
– e.g., Class Hierarchy:

“has-a”
e.g., Person Class:

Recall The Person Class:
public class Person

{

// attributes

private String name;

private int age;

// constructor

Person(String name, int age)

{ this.name = name; this.age = age; }

// methods

public String getName() { return name; }

public void   setName(String name)

{ this.name = name; }

public int getAge() { return age; }

public void setAge(int age)

{ this.age = age; }

}

Reminders:
Style Suggestions: 

javaNamingConvention
CapitalClasses

Don’t Forget Comments!

public class BaseballFielders
{

private Person pitcher;
private Person catcher;
private Person firstBaseman;
private Person secondBaseman;
private Person thirdBaseman;
private Person shortstop;
private Person LeftFielder;
private Person centreFielder;
private Person rightFielder;

Baseball Fielders
• In Baseball, when a team plays the field, they have 

exactly 9 players
• This is a “has-a” relationship

(teams are not players, they have players)
• What would the corresponding Java Class look like?



15

What if you don’t know how 
many?

• Java provides Collections to conveniently store 
an unknown number of objects

• Can store collections of any type of object

• There are 3 main families (types) of collection:
– Sets
– Lists
– Maps

Sets

• Are like the mathematical notion of “set”,
or like a shopping list:

– {Eggs, Milk, Bread, Chocolate, …}

• No Duplicates

• No notion of numerical or alphabetic “order”

import java.util.*;

public class set
{

public static void main(String[] args)
{

// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

// create some friends
Person sally = new Person("Sally", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

System.out.println("I have " + friends.size()
+ " friends");

}
}

Reminder:
Import
generic Lists

• Are like a “To Do” list, a sequence of objects:

1. Weekly Readings
2. Go to Class
3. Work on Assignment
4. Send e-mail to Prof telling him how riveting his lectures are
5. Send e-mail to Prof telling him how riveting his lectures are
6. Submit Assignment

• Can have Duplicates

• Does have a notion of “order”
(not necessarily numeric or alphabetic)



16

import java.util.*;

public class list
{

public static void main(String[] args)
{

// list of people I need to visit
LinkedList<Person> visits = new LinkedList<Person>();

// create some people to visit
Person sally = new Person("Sally", 32);
Person frank = new Person("Frank", 44);
Person billy = new Person("Billy", 36);

// construct list of upcoming visits
visits.add(sally);
visits.add(frank);
visits.add(billy);
visits.add(frank);

System.out.println("I have planned " + visits.size()
+ " visits");

}
}

Duplicates Allowed!

Maps
• Are like a dictionary:

mapping one object (the key)
to another (the value)

– (Key Value):

– (“Hello” “Bonjour”)
– (“My Name Is” “Je m’appelle”)
– (“Croissant” “Croissant”)

• Keys must be Unique,
Values can be Duplicates

import java.util.*;

public class map
{

public static void main(String[] args)
{

// my list of contacts
HashMap<String,Person> contacts

= new HashMap<String,Person>();

// create some people to visit
Person sally = new Person("Sally Yeh", 32);
Person frank = new Person("Frank Sinatra", 44);
Person billy = new Person("Billy Holiday", 36);

// construct list of upcoming contacts
contacts.put("Sally", sally);
contacts.put("Frank", frank);
contacts.put("Billy", billy);

System.out.println("I have " + contacts.size()
+ " contacts");

}
}

(Key, Value) Pairs

Automatic Iteration
• Automatic Iteration is an easy way to get access to the 

data stored in an (Iterable) Collection

• In Java code it looks like this:
– for(Class Variable : Collection)
{

do.somthing();
}

“Type” or
Class Name

of the Objects

Variable Name

Collection 
Variable



17

import java.util.*;

public class set
{

public static void main(String[] args)
{

// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

...

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

System.out.println("I have " + friends.size()
+ " friends");

System.out.println("Here they are:");
for(Person p : friends)

System.out.println("   " + p.getName());
}

}

import java.util.*;

public class map
{

public static void main(String[] args)
{

// my list of contacts
HashMap<String,Person> contacts

= new HashMap<String,Person>();

// create some people to visit
Person sally = new Person("Sally Yeh", 32);
Person frank = new Person("Frank Sinatra", 44);
Person billy = new Person("Billy Holiday", 36);

// construct list of upcoming contacts
contacts.put("Sally", sally);
contacts.put("Frank", frank);
contacts.put("Billy", billy);

Keys Values

CSE1030 – Lecture #8
• Review: “is-a” versus “has-a”
• Theory: Composition versus Aggregation
• Iteration
• Shallow vs. Deep Copy
• We’re Done!

Privacy Leaks

• When somebody “outside” gets a copy of 
an object meant to be securely “inside”…

external

internal

Private?



18

import java.util.*;

public class PrivacyLeak
{

private HashSet<Person> students
= new HashSet<Person>();

// constructor
public PrivacyLeak()

{ students = new HashSet<Person>(); }

// add
public void add(Person p)

{ students.add(p); }

Privacy Leaks

Privacy Leak

import java.util.*;

public class PrivacyLeak
{

private HashSet<Person> students
= new HashSet<Person>();

// constructor
public PrivacyLeak()

{ students = new HashSet<Person>(); }

// add
public void add(Person p)

{ students.add(new Person(p)); }

No Privacy Leak

No Privacy Leak

Big Theory Idea for Today
• There is an important distinction between 

code that uses an object, and the code that 
is responsible for managing an object

• Ideally: Responsibility implies Ownership

• The terms we use for this are Aggregation 
versus Composition
– Aggregation = Using or Servicing an object

– Composition = Ownership Responsibility

Big Theory Idea for Today
• Examples:

– Composition (means defining / constructing)
• Person owns Name
• CreditCard owns Balance (and TotalBalance)

– Aggregation (means collecting)
• A Person doesn’t own their Friend
• CreditCard doesn’t own the Interest Rate

• The idea is pure, but in the real world, the 
distinction is often arbitrary, and depends 
upon one’s perspective



19

To Summarise Iterators

• They provide an easy way to access out data

• They are supported by all of the Java  
Collections

• The special “for-each” syntax makes them 
incredibly easy to use
– Automatically retrieves the iterator
– Reduces the amount of code we have to write

System.out.println("I have " + friends.size()
+ " friends");

System.out.println("Here they are:");
Iterator<Person> it = friends.iterator();
while(it.hasNext())

System.out.println("   " + it.next().getName());
}

}

Comparison
System.out.println("I have " + friends.size()

+ " friends");
System.out.println("Here they are:");
for(Person p : friends)

System.out.println("   " + p.getName());
}

}

Shallow versus Deep Copy

Course1 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

Course2 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

Course1 {}

Sally

Frank

Eli

Student#1

Student#2

Student#3

Student {}

Course2 {}

Student#1

Student#2

Student#3

Faster

Uses Less Memory

Aggregation

Privacy Leak?

Slower

Uses More Memory

Composition

Protects the Data?

Shallow vs. Deep Summary

• The “Shallow versus Deep” issue is very similar 
to a Privacy Leak and it also relates to 
Aggregation / Composition

– If you own the data, you want to ensure it doesn’t get 
changed without you knowing about it

– If you are using the data, you probably want to use the 
latest (most accurate) data available

– Be aware of the issues, and decide accordingly, by 
following the Inherent Relationships in the data



20

CSE1030 – Lecture #9
• “is-a” and Inheritance
• Example 1: Introduction to Inheritance
• Example 2: Constructors
• Example 3: Inheriting Code and Data
• Example 4: equals()
• Example 5: Undergrad
• We’re Done!

Person {…}

Student {…}

Freshman {…}

GradStudent {}UnderGrad {…}

Sophomore {…}

public class Person

{

// attributes

private String Name;

private int Age;

private int Weight;

Person(String name, int age,

int weight)

{

Name = name;

Age = age;

Weight = weight;

}

...

Review “is-a” versus “has-a”

• “is-a”
– e.g., Class Hierarchy:

“has-a”
e.g., Person Class:

public class Student extends Person
{

// attributes
private String ID;
private int    year;

// constructor
Student(String name, int age, String ID, int year)
{

super(name, age);
this.ID = ID;
this.year = year;

}

// copy constructor
Student(Student otherStudent)
{

super(otherStudent);
ID   = otherStudent.ID;
year = otherStudent.year;

}

This is how we do Inheritance in 
Java.  This is how we denote the 

“is-a” relationship.

Otherwise, this class 
looks like the classes 

we’ve seen already – we 
declare some instance 
data (static data too, if 
we want) and include 
functions to do things 
with the data (next).

Relationship Between Super 
and Sub

• The Superclass exists inside the Subclass

• So, pointers to the subclass can be treated as pointers 
to the superclass (even though they’re not…)

{
Student sSally = new Student(...);

Person pSally = Sally;
}

Student {

}

Person {
…

}



21

Subclass Constructors

• The subclass must call the superclass’s
constructor
– Previous Example:

The {Student} is a {Person}, and so one of the Person 
constructors must be called

• You can do this explicitly, as we did in our example
– as the 1st statement in subclass’s constructor

• or if you leave it out, Java will insert a call to the 
default constructor of the superclass for you
– The default constructor is the one that takes no 

parameters, equivalent to:  super()

public class Student extends Person
{

// attributes
private String ID;
private int    year;

// constructor
Student(String name, int age, String ID, int year)
{

super(name, age);
this.ID = ID;
this.year = year;

}

// copy constructor
Student(Student otherStudent)
{

super(otherStudent);
ID   = otherStudent.ID;
year = otherStudent.year;

}

Must be 1st Statement in 
subclass’s Constructor

public class Patient extends Person
{

// attributes
private String ID;
private String problem;
private String treatment;

// default constructor
Patient()
{

this.ID        = "";
this.problem   = "";
this.treatment = "";

}

// methods
public String getID() { return ID; }
public void   setID(String ID)

{ this.ID = ID; }

// ...

Uses the Person class 
default constructor

public class Person
{

// attributes
protected String name;
protected int    age;

// constructors
Person(String name, int age)

{ this.name = name; this.age = age; }

public String toString()
{ return "Person: " + name + "," + age; }

// methods
public String getName() { return name; }
public void   setName(String name)

{ this.name = name; }

public int  getAge() { return age; }
public void setAge(int age)

{ this.age = age; }
}

Need these to be 
protected if subclass is to 

have direct access to 
them, while still keeping 
the implementation safe 

from users of the API



22

Important Point about Inheritance

• All of the public or protected data and code members 
of the superclass are accessible in the subclass
(e.g., name, age, toString(), etc.)

• The subclass can (should?) probably use the accessors
and mutators where possible
– Because the superclass may change its implementation

• But it is important to keep the code understandable, and 
sometimes directly accessing the data members is 
unavoidable

Overriding Inherited Functions

• Remember overloaded functions?
– Same name, but different parameters

– Example: constructors

• Overriding is different:
– Code in subclass replaces code in superclass

– same name, same parameters
– Example (coming up): toString()

public class Patient extends Person
{

// attributes
private String ID;
private String problem;
private String treatment;

// constructor
Patient(String name, int age, String ID,

String problem, String treatment)
{

super(name, age);
this.ID        = ID;
this.problem   = problem;
this.treatment = treatment;

}

public String toString()
{ return "Patient: " + name + "," + age + ","

+ ID + "," + problem + "," + treatment; }

...

Overridden function: 
toString()

public class Person
{

// attributes
protected String name;
protected int    age;

// constructors
public Person(String name, int age)

{ this.name = name; this.age = age; }

public boolean equals(Object o)
{

System.out.println("in Person.equals()");
if(o == null || getClass() != o.getClass())

return false;

Person p = (Person)o;
return name.equals(p.name);

}

...
}



23

One Final Complete Example

• The point here is to provide a 
complete working example

• We start with the Person Class:

• We extend it to be a Student Class:

• And Finally we extend Student to be 
the Undergrad Class:

Person {…}

Student {…}

UnderGrad {…}

CSE1030 – Lecture #10
• Review
• Polymorphism
• Abstract Classes
• Interfaces
• We’re Done!

Polymorphism

• Altogether we have a Class Hierarchy
that looks like this:

Person {…}

Student {…}

Undergrad {…}

Patient {…}

import java.util.*;

public class Contacts
{

// a set in which to store the contacts
private HashSet<Person> contacts;

// constructor
public Contacts() {

contacts = new HashSet<Person>();
}

// add a person to the contacts
public boolean add(Person contact) {

return contacts.add(contact);
}

// get an iterator
public Iterator<Person> getIterator() {

return contacts.iterator();
}

}



24

Polymorphism
• Look how short and easy the Contacts class is

• Look at how easy it is to use the Contacts class

• This is easy because of polymorphism

• Because all of the object types we are interested 
are subclassess of Person
– We don’t need 4 separate ways to store objects
– We can treat all of our objects as Person objects – we 

don’t need 4 separate ways to handle the objects
– We greatly simplify our code
– Also, polymorphic inheritance means we reduce the 

amount of code we need in each class, because the 
subclasses all do similar things, they can inherit that 
code from the superclass

• Like: getName(), setName(), getAge(), setAge()

instanceof
• Polymorphism is great because it encapsulates 

the complexity of the individual classes

• But occasionally it is useful to do the opposite –
to explicitly identify the class of an object

• instanceof allows us to determine the class of 
an object
– Note that due to polymorphism, instanceof identifies 

members of a class or any of its subclasses (“is-a”)

Abstract Classes
• An Abstract Class is similar to a regular class

– It can define Data and Code

• But it is missing the implementation of some 
functions
– The “missing” functions must be labeled abstract

– Also, the class is labeled abstract as well

• But it includes the “signatures” (names & parameters) 
of the missing functions
– This is important for polymorphism

– We want objects of the abstract class to be useful, even 
though we are not able to implement some of the code

• Because there is code missing, no objects can be 
instantiated

• What’s the advantage of Abstract Classes?

• In general they behave like regular classes

• Polymorphism makes them easy to collect

• Also, polymorphism makes it easy to write 
generic utility functions that that can be applied 
to any subclass of Account

(Example on next 5 slides)

Abstract Account Class – Why?



25

Multiple Inheritance
In general the idea is easy:  Multiple 
Inheritance occurs when a subclass 
extends two superclasses.

The Class Hierarchy would look like this:

GradStudent{…} Teacher{…}

TeachingAssistant{…}

Multiple Inheritance Problems
• Multiple Inheritance can give rise to two problems:

– Same name with:
#1 Different Meaning

#2 Same Meaning but Different Semantics

• Java fixes Problem #2 by:
– Multiple Inheritance of Classes is Not Allowed

– Multiple inheritance can only occur with Interfaces, which are 
a special form of pure abstract classes

• Because they have no implementations, they cannot have 
conflicting semantics

• Java doesn’t fix Problem #1, so you have to be 
careful that all Data and Code names are distinct 
when doing multiple inheritance with interfaces

Interfaces are similar to classes
• But you cannot instantiate objects of the interface 

(no objects!)
– Only subclasses (sub-interfaces) can be instantiated

• Kind of like a “fill in the blank” class

• But they do support multiple inheritance
– A class can implement more than one interface
– Because there’s no code, the semantics of a function 

cannot differ between super-interfaces

• Interfaces can be used just like classes, which 
makes them very useful
– The next example demonstrates a collection of Teachers

Summary Notes about Interfaces
• Subclasses may extend only one superclass

• A subclass can implement any number of interfaces

• (Subclasses do not extend an interface, they 
implement it)

• There is no support in Java to handle name clashes in 
inherited code – you’ll have to change the interfaces 
to avoid these (inconvenient)

• Interfaces have:
– no instance data (only static final)
– no code

• only function signatures (function name + parameter types)



26

Interface Example
• We will give an implementation of this class hierarchy, 

which includes an interface (Teacher)

GradStudent{…}
interface

Teacher{…}

TeachingAssistant{…}

Person {…}

Student {…}

Next…

The Midterm


